Dynamical formation: an example

What are star clusters?

Star clusters in galaxies

Property	Open Clusters	Globular Clusters
Mass (M⊙)	up to ~ 10 ³	typical ~ 10 ⁵
ρ _c (M⊙pc⁻³)	up to ~ 10 ²	typical ~ 10 ⁴
Typical age	up to ~ 7 Gyr	9 - 12 Gyr
Binary fraction (f _b)	~ 50%	few - 20%
Metallicity	higher	low

Stellar-Mass Candidate BHs

are Observed in GCs

M62

Chomiuk et al. 2012

Physical Processes

 $T_1 > T_2$

*

*

Two-body relaxation

- Cumulative effect of a sequence of weak pair-wise gravitational interactions is a slow diffusion of energy
- Natural consequence is mass segregation

- Cumulative effect of a sequence of weak pair-wise gravitational interactions is a slow diffusion of energy
- Natural consequence is mass segregation

Strong Scattering 8

Physical Processes

Two-body relaxation

Strong Scattering & Binary Burning

Single & Binary Stellar Evolution

Two-body rela>

Strong Scatterii

Single & Binary

Tidal Stripping by the Galaxy

Results are Directly Comparable to Observations

Chatterjee et al. 2013

Dynamical Formation of Binary Black Holes & Implications for aLIGO

Numerical Simulation Setup

- Hénon-type Monte Carlo simulations using CMC
- Coverage of a large parameter space
 - $N \sim 2 \times 10^5$ to 2×10^6
 - *Z* ~ 0.0005, 0.001
 - King profile with $W_0 = 5$
 - Initial $f_b = 5$ to 10%
 - Kroupa (2001) IMF between 0.08 to 150 M_{\odot}
- BH formation kick distribution
 - Momentum conserving, dependent on progenitor mass and Z (Belczynsky 2012)
- Wind mass loss prescription: weak winds (e.g., Vink 2001)

CRoRa-16, ApJ (in press)

 $r_{\rm 2D}$ (pc)

10⁰

 10^{-1}

10⁻²

Ask me later how to infer BHs in a star cluster from observable cluster properties

CRoRa-16, ApJ (in press)

What Really Happenes to the BHs in Clusters? Lagrange Radii: BHs and non-BHs

What Really Happenes to the BHs in Clusters?

What Really Happenes to the BHs in Clusters?

What Really Happenes to the BHs in Clusters?

